CAUSES OF DAMAGES
AND
PREVENTIVE ACTIONS

Prof. André PLUMIER
Securing Europe Against Future Earthquake Losses

CAUSES OF DAMAGES
Fault rupture

Turkey 1999

Taiwan 1999
Landslides
Securing Europe Against Future Earthquake Losses

CAUSES OF DAMAGES

Liquefaction
Turkey 1999

Subsidence
Turkey 1999
Securing Europe Against Future Earthquake Losses

CAUSES OF DAMAGES

Fault rupture Landslides Liquefaction Subsidence

Actions against those causes of damage:

- Do not build:
 - research to define adequate construction sites
 - urban planning

- Soil improvement
 - special cases

- Design to withstand those effects
 - sometimes
Securing Europe Against Future Earthquake Losses

Causes Of Damages

Tsunamis

Sumatra 2004

Hakkeduwa, Sri Lanka

Maddampegama, Sri Lanka

Actions:

- Construction of dykes
- Construction of buildings above ground level
- Tsunami warning centers
- Education evacuation of the populations
- Preparation of the population by civil protection agencies

At short distance from potential epicenter:

Information to recognize the danger before the wave arrival:

Earthquake move, sea subsidence
Securing Europe Against Future Earthquake Losses

Causes Of Damages

FIRES

Actions:
- Information to the population to reduce risk of gas escapes at homes
- Adequate Design of gas networks and other facilities
- Urban planning to access of fire brigades and limitation of fire extension
Securing Europe Against Future Earthquake Losses

Causes Of Damages

Strong Ground Motion

Turkey, 1998

Greece, 1999

Structural failures

Turkey 1998

Romania, 1991
Securing Europe Against Future Earthquake Losses

Causes Of Damages

Strong Ground Motion

Structural failures

Falling objects

Belgium, 1983

Liege, 1983
Securing Europe Against Future Earthquake Losses

Causes of Damage

Strong Ground Motion: main cause of EQ damages \(\approx 80\% \)
- Affects all zones around the epicenter
- Consequences cannot be avoided with only urban planning
- After the earthquake at the epicenter no human action possible before only automatic action (EWS)
- Civil Protection actions: ► after the emergency is declared
 ► too late to avoid the worse
 ► vital to help after the earthquake

Actions:
- Build new constructions & infra-structures
- Strengthen old to resist to the effects of ground motions before earthquakes happen \(\Rightarrow \) **PREVENTION**

Structures and equipments can be ► designed
► strengthened to resist earthquakes
Examples of strengthening

Securing Europe Against Future Earthquake Losses

Additional RC frames or walls

France

Turkey
Securing Europe Against Future Earthquake Losses

Examples of strengthening

Switzerland

Additional steel bracings California
Securing Europe Against Future Earthquake Losses

Examples of strengthening

Additional ties France
Securing Europe Against Future Earthquake Losses

Ground Motion

Actions: technical means against ground motion effect

- **Existing buildings:** evaluate the seismic resistance, strengthen where necessary, isolate. Best return: strengthen the worse ones.

- **New construction:** Quality control design materials, correspondence to drawings. Damages proportional to lack of quality.

- **Existing lifelines and transportation networks:** evaluate seismic resistance, strengthen where necessary, public and private, industry.

- **Existing “Seveso” type of industry:** impose re-evaluation! HIGH RISKS! low & high seismicity zones.

- **Monuments:** strengthen where necessary. Protection of built cultural heritage.
Securing Europe Against Future Earthquake Losses

Ground Motion

Actions: means against ground motion effect

- Saving lives: Civil Protection
 - Does not avoid the worse
 - Acts after the earthquake
 - Important to save live, feed people, stabilize buildings…
 absolutely necessary complement to “technical means”

Feeling impotent…
Securing Europe Against Future Earthquake Losses

Structures and equipments can be ► designed
► strengthened
to resist earthquakes and their effects

New & existing constructions: Eurocode 8 year 2004
National Annexes now

Actions to put technical means into practice.

Education
● Civil engineers: « easy EC8 » to prepare
● Architects !!!: learn seismic conceptual design
● Development of educational tool: “Seismic retrofitting at the occasion of architectural modifications”
● Agreed European curriculum (Bologna)

Enforcement
● consider EC8 for new buildings
● evaluate critical installations « Seveso »
● “European Seismic Certificate” compulsory for designers in seismic zones
● Engineer design compulsory in retrofitting including historical buildings
● Check of potentially falling non structural components